
1

A Cryptographically Secure
Voting System for the MIT Community

Fernando Trujano
trujano@mit.edu

I. INTRODUCTION

Every year, student groups and organizations throughout
MIT hold elections in order to choose their leaders and repre-
sentatives. Voting allows each individual to voice their opinion
and feel like they are having an impact in the organization.
Many times, votes are cast anonymously to protect the identity
of the voter and ensure that other factors such as peer pressure
do not influence a voter’s decision. Furthermore, to guarantee
the integrity of the system it is important that these elections
are run as fairly as possible, without one party having total
control over the results.

An ideal system would allow each individual to vote anony-
mously and verify that their vote was indeed counted and that
all of the votes were counted correctly. Unfortunately, systems
currently used at MIT fail to provide any guarantee of fairness
or anonymity that an ideal system would call for.

I surveyed existing systems at MIT and found that many
dorms still rely on paper ballots, which are submitted by
residents and counted by a single party. This system does not
guarantee anonymity (since one could for example, identify a
ballot based on the pen used or the handwriting) or fairness
(since whoever is counting the votes could purposely report
incorrect results).

Some current systems, such as the one used by the Inter
Fraternity Council (IFC), allow for individual verification of
election results, but give up voter anonymity as a result. In
the IFC, eligible voters meet to discuss an issue and then
publicly vote by raising their hand. While this method may
be okay for minor votes, more difficult decisions should be
made anonymously for reasons explained above.

Other systems, such as the electronic one used in Simmons
Hall, correctly guarantee anonymity, but fail to provide a way
for the public to verify the results of the election and instead
rely on a single party to tally and report the results. A corrupt
party could intentionally or accidentally alter the results of an
election.

As seen above, there are many desirable properties for an
electronic voting system, which can be summarized by the
following: privacy, unreusability, eligibility and verifiability.
Privacy in this context is synonymous with anonymity. Voters
should be able to cast their votes based on their beliefs without
allowing others to see their vote. To maintain the integrity of
the voting system, voters should be allowed to vote only once
and their votes should be unreusable. For similar reasons, a
desirable voting system should ensure that only the correct
eligible users are allowed to submit their vote. Finally, voters
will trust a system if they can individually verify that their

vote was counted correctly and that the overall election results
were computed fairly.

In this paper, I implement a cryptographically secure voting
system for the MIT community. The system is cryptograph-
ically secure in that it uses a combination of cryptographic
protocols to guarantee privacy and verifiability, making it
computationally infeasable for an attacker to influence the
results of an election. The design for the system is based on
a paper by Fujioka and Okamoto [1] with simplifications and
changes to better suit the MIT community. The main goal of
the system is security: voters should be confident that their
votes counted and can verify/audit the results of an election.
With this system, the MIT community will be able to provide
a consistent, secure, and anonymous voting experience for any
type of election.

II. DESIGN

This secret voting scheme achieves voter privacy while al-
lowing verifiability by all parties, even in the case of malicious
organizers and administrators. The system consists of a two-
part voting stage and three parties, the voter, the administrator
and the counter. An overview of the system is shown in
Figure 1.

Voters communicate with the administrator and the counter
in order to cast a secure ballot. This scheme relies on blind
signatures, which are explained in detail in [5]. A voter first
decides on his/her vote and writes it down on a ballot. A
voter then blinds the ballot using a sufficient large randomly
generated integer and sends their blinded ballot, as well as a
form of authentication/ID to the administrator.

Fig. 1. Overview of the voting process. Parties are represented by rectangles
while communication/messages are shown by arrows

2

The administrator is responsible for authenticating voters
and signing their ballots. When an administrator receives a
blinded ballot from a voter, the admin checks the voter’s ID
and their eligibility to vote and signs the blinded ballot if the
voter is eligible. The administrator then sends the signed ballot
back to the voter. Upon request, the administrator can give
anyone a list of all blinded ballots that he/she has signed for
this election. At this point, the voter can unblind the signed
message in order to obtain a valid signature for their original
ballot. The voter then sends their original ballot, along with
the matching signature from the administrator obtained above
through an anonymous channel to the counter.

The counter is in charge of receiving ballots, verifying
them and counting the results. Upon receiving a ballot and
signature from a voter, the counter verifies the ballot using the
administrator’s public key. If both the ballot and the signature
are valid, the counter adds the ballot and the signature to a
publicly accessible board (the public bulletin board or PBB).
At the end of the election anyone can go and check the bulletin
board to make sure that their vote was counted as well as the
general result of the election.

A. Design Security
Many of the security proofs follow from that of the original

design, but I will briefly mention them again here.
Eligibility - The administrator checks that a user is allowed

to vote by authenticating them with their ID. Therefore, as-
suming the security of the ID mechanism, a person who is not
allowed to vote will not be authenticated by the administrator.

Unreusability - Before signing a blinded ballot, the admin-
istrator checks that the voter is eligible to vote in the election.
Once a voter has received a signature from the administrator,
the administrator will not sign another ballot from that user.
This way, voters can vote only once. A malicious or com-
promised administrator may purposely sign more ballots for a
specific user, allowing them to vote more than once. In this
case however, there will be a mismatch between the number of
voters in the election, and the number of ballots cast allowing
anyone to detect an inconsistency in the election and invalidate
the results.

Privacy - In the first part of the voting, the voter sends
a blinded ballot to the administrator, along with identify-
ing/authentication information. Since the ballot is blinded,
there is no way for the administrator to know the contents
of the ballot, even if he/she compares their signature of the
blinded ballot to the signatures of the unblinded ballots made
available by the counter.

It is important to note that all communication between voters
and the counter happens though an anonymous channel and
thus the counter is never able to know who is sending the
ballots. Therefore, there is no way to prove that any one ballot
belongs to a specific individual.

Verifiability - Since all ballots are made public , anyone
can visit the public bulletin board in order to make sure their
vote was counted and verify the results of the election. Figure
2 shows what information is available to each party after the
election.

Fig. 2. Information that each party has after the election and whether that
information is public or not

III. IMPLEMENTATION

This system is implemented as a single web app running on
a node.js server. The backend uses mongodb to store election
information such as voter data and ballots. Currently, admin
keys are stored in the server’s filesystem. As this system is
designed for the MIT community, MIT certificates are used
for authentication throughout the system when needed. The
current flow of an election is as follows:

1) An organizer (i.e., any MIT community member) au-
thenticates to the election server via MIT certificates
and creates an election by listing the kerberos’s of
voters.

2) Voters create their ballot, which may include write-ins,
and blind it using the provided open source python
script (see Appendix A), or though their own means
if preferred.

3) Voters receive an election ID from the organizer and
use this to communicate with the right administrator in
order to get their blind ballot signed.

4) Once the voters authenticate with the administrator,
and the administrator verifies their eligibility to vote
in the election (as specified by the organizer upon the
creation of the election) the administrator signs the
blind ballot and sends it back to the voter. The voter
unblinds the ballot using the unblind python script (see
Appendix B) or through their own means and obtains
a valid signature for the unblinded ballot.

5) The voter sends the unblinded ballot and signature over
to the correct counter using the electionID from step 3.
Note that the counter need not know who the voter is
at this point, so for privacy the voter is welcome to do
this step on any device, or through a more anonymous
channel, such as the Tor network [2].

6) The counter verifies the signature and adds the ballot
to the public bulletin board.

7) Once everyone has voted, the organizer can decide to
end the election, which reveals the ballots and their
signatures to anyone that requests it for verifiability of
the results.

3

In order to achieve a strong cryptographically secure voting
system, many design choices had to be made. For example,
the system trades off usability for strong security. Voting now
requires four steps (blind, send, unblind, send) instead of one,
but provides guaranteed privacy and verifiability as a result.
The system purposely separates these steps to further increase
user confidence in the system since all blinding and unblinding
operations are performed outside of the browser.

Since the system is tailored for the MIT community, it
makes use of MIT certificates for authentication, as these are a
proven way to authenticate users. I used a modified version of
the open source mit-cert-auth package [7] to authenticate MIT
certificates from a non-MIT server. This package uses a shared
secret between the non-MIT server and a small PHP script
on an athena account. Furthermore, since the system allows
anyone to create an election, a new administrator key pair is
created for each election to prevent voters from anonymously
casting ballots from other elections in order to influence the
results.

IV. FUTURE WORK

As it stands currently, there is plenty of room for improve-
ment of the system in both its usability and security.

In terms of usability, the system should be integrated with
MIT’s WebMoira to allow organizers to easily and quickly
define voters by entering a WebMoira list that all members
are in. This would greatly minimize the time required to start
an election as most groups already have mail lists for their
members. Additionally, a more friendly UI with text explaining
the security behind the system and why the extra steps are
required would increase voter participation and trust in the
system.

While the main goal of this system is to be secure, there is
still more work that could be done to achieve better security
guarantees. This system relies heavily on the use of the
administrator’s private key in order to validate anonymous
ballots. Currently, keys are created for each election and stored
on the server’s file system. An attacker with full access to the
system could potentially compromise this key and render the
election useless.

It should be noted however, that even if an attacker gains
access to the private key, they will only be able to invalidate the
results of the election rather than maliciously modify/influence
them. Individual voters and third parties would be able to
detect these fraudulent ballots by cross checking the admin’s
signed list, with the public bulletin board and the number
of voters. A more secure key store, such as ones offered
by Tyfone’s secure card [4] would mitigate this issue by
guaranteeing the security of keys on the server (i.e., once a
key is created on a secure card, it can never be exported).

Another desirable property of voting systems is the pre-
vention of vote selling. Vote selling would allow a corrupt
party to influence the election by paying voters for voting a
certain way. As it currently stands, this system (and any of the
systems mentioned in the introduction) are not secure against
vote selling. While at the end of the election, the system has no
way of tying an individual ballot to a voter, the voting phase

itself is open. This allows a corrupt party to witness the voting
process and pay voters who vote a certain way. This issue was
purposely not addressed as fixing it would require a closed
voting process which could greatly inconvenience voters.

Lastly, while this system is open with the information it
receives from its users (i.e., almost everything on the database
is public), it is still a centralized system hosted on a single
machine that could potentially be compromised. To deal with
this issue, it is worth exploring the possibility of creating
a decentralized version of this voting system. One may be
able to use tools such as Blockstack [3] to run a server
less application. The admin key could be kept secret using
an implementation of Shamir’s secret sharing algorithm and
votes would be analogous to transactions in a bitcoin-like
blockchain.

V. CONCLUSION

Most voting systems at MIT lack the basic security prop-
erties of a desirable voting system such as privacy and
verifiability. I have implemented a cryptographically secure
voting system tailored to the MIT community that provides,
among other things, full voter anonymity and individual and
third party election verifiability. This system is secure against
internal and external malicious parties. Assuming the security
of the cryptographic properties used, no party, including the
election organizer will be able to falsely modify the results of
the election.

ACKNOWLEDGMENTS

I would like to thank Dorothy Curtis for her guidance and
supervision throughout this project. Additionally, I would like
to thank Ron Rivest for his excellent list of research papers
regarding the topic of secure voting systems [6].

AVAILABILITY

The server and client code is available in its entirety
under the MIT license at https://github.com/Fertogo/elections.
Deploy instructions are included in the README.

REFERENCES

[1] Fujioka, A., Okamoto, T., Ohta, K. (n.d.). A Practical Secret
Voting Scheme for Large Scale Elections. Retrieved from
https://people.csail.mit.edu/rivest/voting/papers/FujiokaOkamotoOhta-
APracticalSecretVotingSchemeForLargeScaleElections.pdf

[2] Dingledine, R., Mathewson, N., Syverson, P. (n.d.). Tor: The Second-
Generation Onion Router. https://svn.torproject.org/svn/projects/design-
paper/tor-design.pdf

[3] Ali, M., Nelson, J. (n.d.). Blockstack: A Global Naming and Storage
System Secured by Blockchains. https://blockstack.org/blockstack.pdf

[4] Tyfone Inc. Side-X Secure Token. Retrieved from
https://tyfone.com/products/side-x-digital-endpoint-security/

[5] Chaum, D. (1982). Blind Signatures for Untraceable payments. Retrieved
from http://www.hit.bme.hu/ buttyan/courses/BMEVIHIM219/2009/
Chaum.BlindSigForPayment.1982.PDF

[6] Rivest, R. L. (n.d.). Voting Resources Page. Retrieved from
https://people.csail.mit.edu/rivest/voting/

[7] Fazel-Rezai, V. (2016, January 13). mit-cert-auth. Retrieved from
https://github.com/vfazel/mit-cert-auth

Appendix A

#	Usage:	python	blind.py	ballotText

from	Crypto.PublicKey	import	RSA
from	Crypto.Hash	import	SHA256
from	random	import	SystemRandom
import	sys

def	saveToFile(filename,	data):
				file	=	open(filename,	'w')
				file.write(data)
				file.close()
				print	"Created	file:	"	+	filename

def	readFromFile(filename):
				file	=	open(filename,	'r')
				data	=	file.readlines()
				file.close()
				return	''.join(data).replace(">","").replace("<","")
				
def	blindMessage(msg):	
				print	"Blinding	ballot..."
				
				pub=	RSA.importKey(readFromFile('key.pub'))
				
				r	=	SystemRandom().randrange(pub.n	>>	10,	pub.n)
				saveToFile('r',	str(r));
						
				hash	=	SHA256.new()
				hash.update(msg)
				msgDigest	=	hash.hexdigest()
								
				msg_blinded	=	pub.blind(msgDigest,	r)
				msg_blinded	=	''.join(x.encode('hex')	for	x	in	msg_blinded)	#hex
				
				print	"Blinded	Ballot:",	msg_blinded
				#	User	sends	msg_blinded	to	administrator	for	signature

blindMessage(sys.argv[1])

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Python

Appendix B

#	Usage	python	unblind.py	adminSignature

from	Crypto.PublicKey	import	RSA
from	Crypto.Hash	import	SHA256
from	random	import	SystemRandom
import	sys

def	readFromFile(filename):
				file	=	open(filename,	'r')
				data	=	file.readlines()
				file.close()
				return	''.join(data).replace(">","").replace("<","")

def	unblindMessage(msg_blinded_signature):
				pub=	RSA.importKey(readFromFile('key.pub'))

				r	=	(long)	(readFromFile('r'))

				msg_signature	=	pub.unblind(msg_blinded_signature,	r)

				print	"Signature	for	original	ballot:"
				print	msg_signature
				#	User	submits	msg_signature	to	counter

				verifyMessage(msg_signature)

def	verifyMessage(msg_signature):
				msg	=	raw_input("What	was	the	original	ballot?	")

				hash	=	SHA256.new()
				hash.update(msg)
				msgDigest	=	hash.hexdigest()

				if	(pub.verify(msgDigest,	(msg_signature,))):
								print	"Signature	is	good.	Submit	signature	and	original	ballot	to	the	counter"
				else:
								print	"The	signature	is	invalid.	Something	went	wrong"

unblindMessage(long(sys.argv[1]))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Python

	UAP_Elections (3)
	appendix

